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Same Question, Different Answers

• Minor format changes (e.g., spacing, casing) make GPT-4o 
give different answers to the same question
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Format Variation Design

• Prompt format variations*: changes in input formatting while 
preserving the exact wording of the main content

• 3 orthogonal binary factors → 23 = 8 variants per input
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*(Sclar et al., 2024)



Measuring Consistency

• Pairwise consistency*: measures whether a model returns the 
same prediction for two semantically equivalent inputs.

• Setwise consistency: evaluates whether a model produces the 
same output across a set of semantically equivalent inputs.
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*(Elazar et al., 2021)



Experimental Setup

• A range of datasets, models and prompting strategies

• Prompting strategies
• Zero-shot: tests pre-trained knowledge

• CoT (chain-of-thought): encourages intermediate reasoning

• Few-shot: provides in-context demonstrations to guide behavior
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Quantitative Results

• Takeaways
• Model scaling reduces inconsistency, while multimodal training, 

instruction tuning, distillation and prompting strategies show little 
effect

• Even GPT-4o remains inconsistent under minor prompt variations

→ Do LLMs truly separate form from meaning?
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Representation-Level Analysis

• 2D PCA visualization of output embeddings from the final 
layer at the last token position of the input prompt
• Distinct formatting variants form separable clusters in the 

embedding space → format differences are encoded in the model’s 
internal representations
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Tracing the Propagation of Inconsistency

• Input-level format changes propagate through embedding 
space, as embedding distance correlates with output 
inconsistency → Form and meaning are entangled in the 
embedding space
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Layer-wise Correlation Analysis

• Middle layers show strongest link between embedding 
distance and inconsistency → core semantic representation is 
most vulnerable to format noise
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Testing Mitigation Strategies

• Prompt-based
• Reference-guide*: improves consistency, requires external evidence

• Self-consistency**: improves CoT consistency, computationally expensive
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*(Lewis et al., 2020)
**(Wang et al., 2022)



Testing Mitigation Strategies

• Fine-tuning on diverse formats
• Poor generalization to unseen formats: no improvement even for 

memorized samples when prompted in unseen formats (surprising 
failure)

• Limited performance gain: some improvement for unseen samples in 
seen formats, but inconsistency remains
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Conclusion

• Semantic inconsistency is a representational failure
• Form and meaning are entangled in embedding space

• Future solutions must target representation-level alignment
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