#### When Format Changes Meaning: Investigating Semantic Inconsistency of Large Language Models

Cheongwoong Kang<sup>1</sup>, Jongeun Baek<sup>1</sup>, Yeonjea Kim<sup>1</sup> and Jaesik Choi<sup>1,2</sup>

<sup>1</sup>KAIST, <sup>2</sup>INEEJI







01 Introduction

O2 Quantifying Semantic Inconsistency

CONTENTS

Mechanistic Diagnosis

04 Limits of Standard Mitigation Strategies

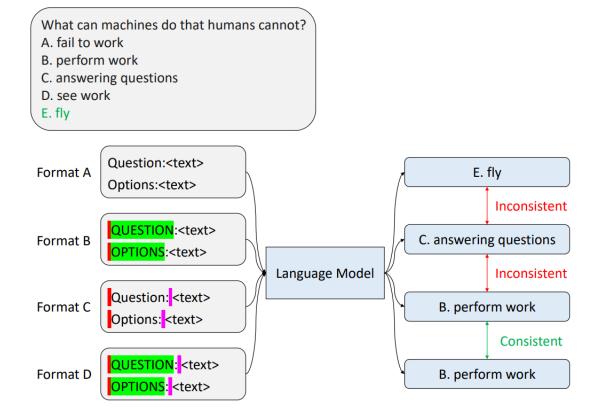
05 Conclusion

03

01 Introduction

#### Same Question, Different Answers

 Minor format changes (e.g., spacing, casing) make GPT-40 give different answers to the same question



O2 Quantifying Semantic Inconsistency

# Format Variation Design

- Prompt format variations\*: changes in input formatting while preserving the exact wording of the main content
- 3 orthogonal binary factors  $\rightarrow$  2<sup>3</sup> = 8 variants per input

```
Question: <text>
Options: <text>
```

- Space before descriptor: with or without a space
- Casing of descriptor: capitalized or all caps
- Space after separator: with or without a space

# Measuring Consistency

 Pairwise consistency\*: measures whether a model returns the same prediction for two semantically equivalent inputs.

Consistency<sub>pairwise</sub>
$$(j,k) = \mathbb{1}(\hat{y}_j = \hat{y}_k)$$
 (1)

• Setwise consistency: evaluates whether a model produces the same output across a set of semantically equivalent inputs.

Consistency<sub>setwise</sub>(
$$\mathcal{S}$$
) =  $\mathbb{1}(|\{\hat{y}_k \mid k \in \mathcal{S}\}| = 1)$  (2)

#### Experimental Setup

#### • A range of datasets, models and prompting strategies

| Dataset           | Domain      | Answer Format        | Validation Samples | Test Samples |
|-------------------|-------------|----------------------|--------------------|--------------|
| CommonsenseQA     | Commonsense | Multiple Choice (5)  | 244                | 977          |
| QASC              | Science     | Multiple Choice (8)  | 185                | 741          |
| 100TFQA           | Factual     | True/False           | 20                 | 80           |
| GSM8K             | Math        | Number               | 263                | 1056         |
| MMLU-Pro-Law-100Q | Law         | Multiple Choice (10) | 5                  | 100          |

| Model                        | Parameters |  |
|------------------------------|------------|--|
| Phi-3.5-mini-instruct        | 3.8B       |  |
| Phi-3.5-vision-instruct      | 4.2B       |  |
| Llama-3.1-8B                 | 8B         |  |
| Llama-3.1-8B-Instruct        | 8B         |  |
| Llama-3.1-70B-Instruct       | 70B        |  |
| DeepSeek-R1-Distill-Llama-8B | 8B         |  |
| GPT-4o*                      | -          |  |

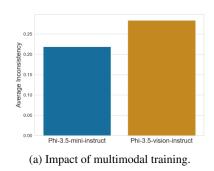
gpt-4o-2024-11-20

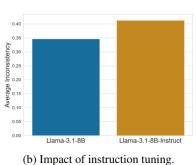
#### Prompting strategies

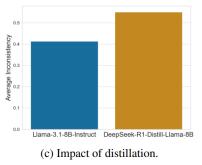
- Zero-shot: tests pre-trained knowledge
- CoT (chain-of-thought): encourages intermediate reasoning
- Few-shot: provides in-context demonstrations to guide behavior

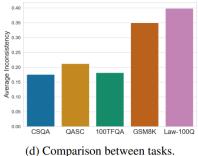
#### Quantitative Results

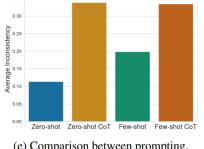
- Takeaways
  - Model scaling reduces inconsistency, while multimodal training, instruction tuning, distillation and prompting strategies show little effect
  - Even GPT-40 remains inconsistent under minor prompt variations
    - → Do LLMs truly separate form from meaning?

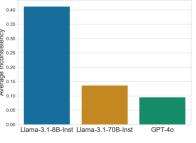












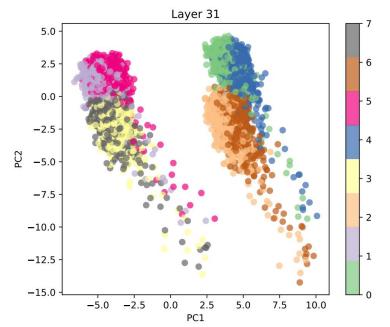
(e) Comparison between prompting.

(f) Impact of model scaling.

03 Mechanistic Diagnosis

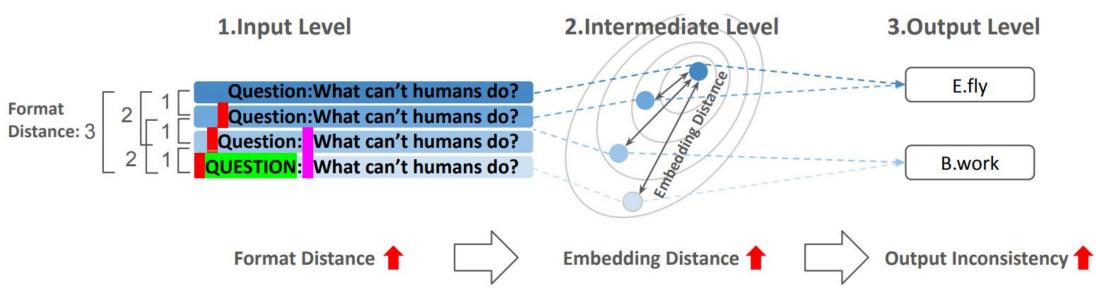
#### Representation-Level Analysis

- 2D PCA visualization of output embeddings from the final layer at the last token position of the input prompt
  - Distinct formatting variants form separable clusters in the embedding space → format differences are encoded in the model's internal representations



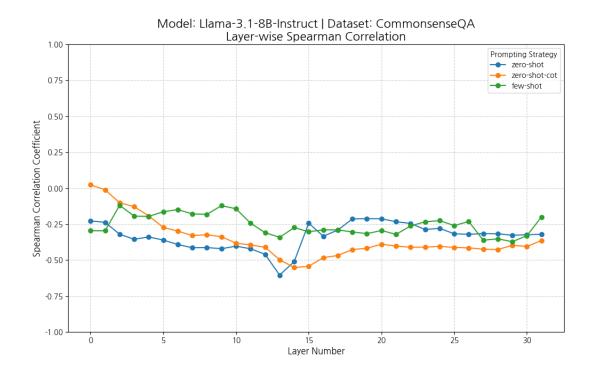
# Tracing the Propagation of Inconsistency

 Input-level format changes propagate through embedding space, as embedding distance correlates with output inconsistency → Form and meaning are entangled in the embedding space



# Layer-wise Correlation Analysis

 Middle layers show strongest link between embedding distance and inconsistency -> core semantic representation is most vulnerable to format noise



04 Limits of Standard Mitigation Strategies

#### Testing Mitigation Strategies

- Prompt-based
  - Reference-guide\*: improves consistency, requires external evidence
  - Self-consistency\*\*: improves CoT consistency, computationally expensive

| Task          | Model                 | Zero-shot   | Zero-shot CoT    | Few-shot                 | Few-shot CoT     |
|---------------|-----------------------|-------------|------------------|--------------------------|------------------|
| CommonsenseQA | Llama-3.1-8B-Instruct | 0.75   0.10 | 0.76   0.25      | 0.68   0.51              | -                |
|               | + Self-consistency    | 0.75   0.14 | $0.77 \pm 0.20$  | $0.69 \mid 0.53$         | -                |
|               | + Fine-tuning         | 0.7910.09   | 0.77   0.25      | 0.77   0.13              | -                |
|               | gpt-4o-2024-11-20     | 0.85   0.07 | 0.84   0.08      | 0.87   0.04              | -                |
|               | + Self-consistency    | 0.85   0.08 | 0.84   0.08      | 0.87   <mark>0.06</mark> | -                |
| QASC          | Llama-3.1-8B-Instruct | 0.82   0.09 | 0.82   0.19      | 0.61   0.84              | 0.68   0.74      |
|               | + Reference-guided    | 0.91   0.07 | -                | -                        | -                |
|               | + Self-consistency    | 0.82   0.13 | $0.84 \pm 0.16$  | $0.61 \mid 0.85$         | $0.73 \pm 0.59$  |
|               | + Fine-tuning         | 0.84   0.10 | 0.84   0.19      | 0.7610.33                | 0.73   0.59      |
|               | gpt-4o-2024-11-20     | 0.92   0.05 | 0.91   0.06      | 0.94   0.04              | 0.93   0.04      |
|               | + Reference-guided    | 0.9610.03   | -                | -                        | -                |
|               | + Self-consistency    | 0.91   0.06 | 0.90   0.06      | 0.94   0.05              | $0.93 \mid 0.03$ |
| 100TFQA       | Llama-3.1-8B-Instruct | 0.70   0.10 | 0.72   0.26      | 0.70   0.24              | 0.68   0.48      |
|               | + Self-consistency    | 0.69   0.10 | $0.74 \pm 0.20$  | $0.70 \mid 0.35$         | $0.67 \pm 0.32$  |
|               | + Fine-tuning         | 0.69   0.10 | 0.7110.28        | $0.67 \mid 0.34$         | $0.65 \mid 0.42$ |
|               | gpt-4o-2024-11-20     | 0.93   0.06 | 0.97   0.05      | 0.94   0.00              | 0.98   0.05      |
|               | + Self-consistency    | 0.94   0.08 | $0.97 \mid 0.02$ | 0.94   0.00              | $0.98 \mid 0.01$ |
| GSM8K         | Llama-3.1-8B-Instruct | -           | 0.54   0.75      | -                        | 0.79   0.37      |
|               | + Self-consistency    | -           | 0.74   0.52      | -                        | $0.87 \pm 0.23$  |
|               | + Fine-tuning         | -           | 0.66   0.52      | -                        | 0.65   0.48      |
|               | gpt-4o-2024-11-20     | -           | 0.91   0.13      | -                        | 0.95   0.05      |
|               | + Self-consistency    | -           | $0.94 \pm 0.08$  | -                        | $0.96 \pm 0.03$  |

#### Testing Mitigation Strategies

- Fine-tuning on diverse formats
  - Poor generalization to unseen formats: no improvement even for memorized samples when prompted in unseen formats (surprising failure)
  - Limited performance gain: some improvement for unseen samples in seen formats, but inconsistency remains

05 Conclusion

#### Conclusion

- Semantic inconsistency is a representational failure
  - Form and meaning are entangled in embedding space
  - Future solutions must target representation-level alignment

# Thank You