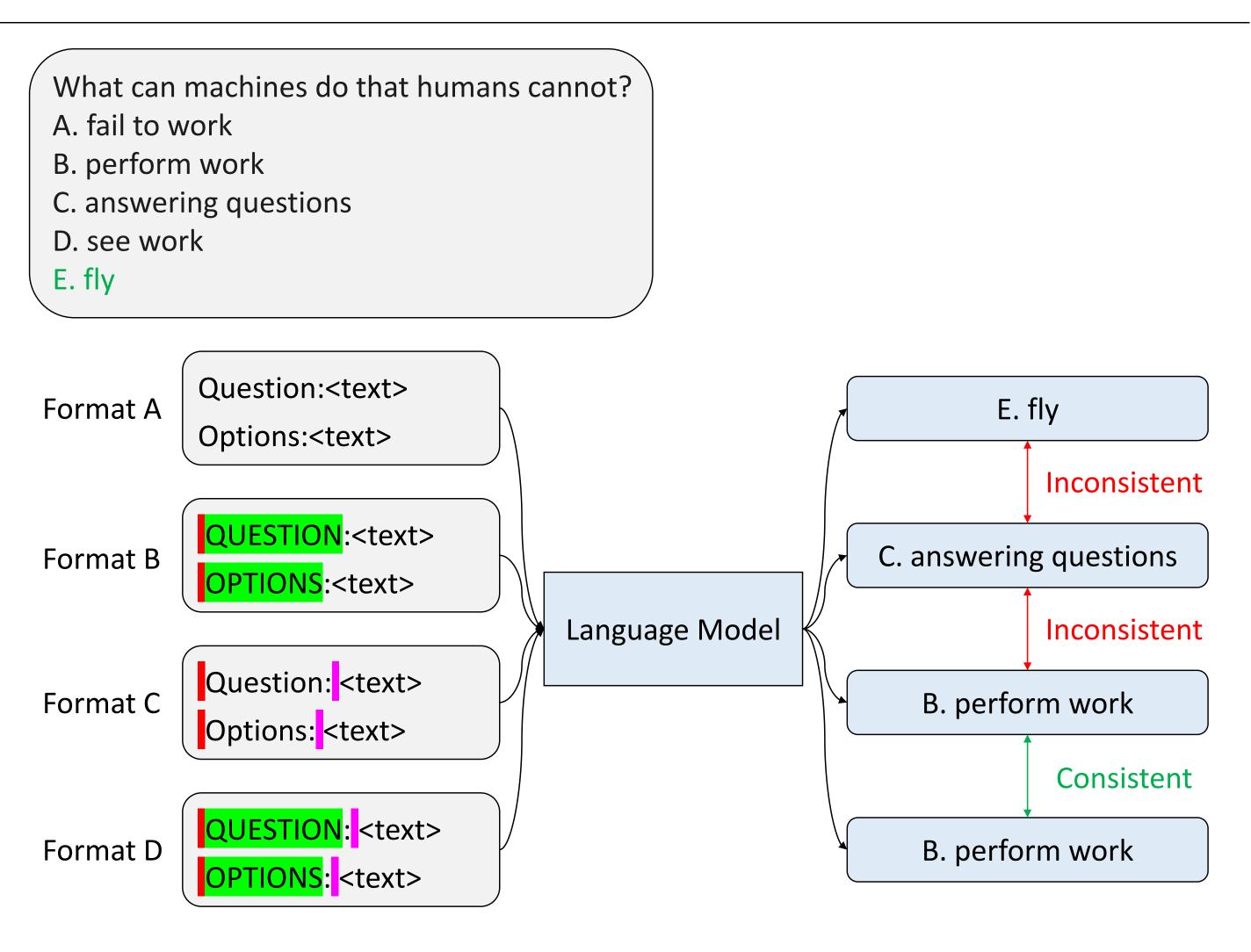
When Format Changes Meaning: Investigating Semantic Inconsistency of Large Language Models

Cheongwoong Kang¹, Jongeun Baek¹, Yeonjea Kim¹, Jaesik Choi^{1,2}

¹KAIST ²INEEJI

Same Question, Different Answers?



Subtle format changes (e.g., casing, spacing) make GPT-40 give different answers to the same question.

Evaluation Framework

Format Variation Design

- (1) Space before descriptor: with / without
- (2) Casing of descriptor: Capitalized / ALL CAPS
- (3) Space after separator: with / without
- $\Rightarrow 2^3 = 8$ format variants per input

Metrics

• Semantic consistency: identical predictions across semantically equivalent inputs

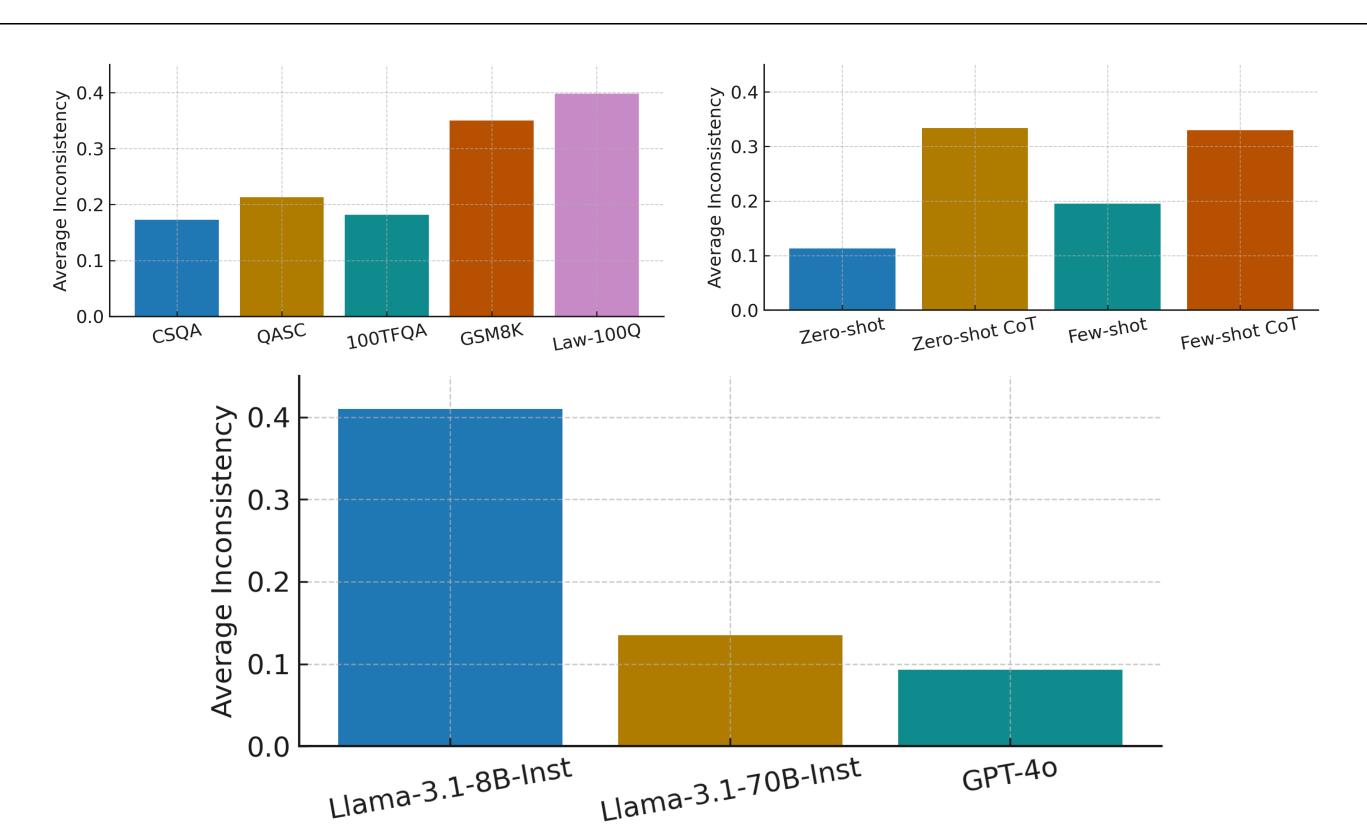
Consistency_{pairwise}
$$(j, k) = 1(\hat{y}_j = \hat{y}_k)$$
 (1)

Consistency_{setwise}(
$$\mathcal{S}$$
) = 1($|\{\hat{y}_k \mid k \in \mathcal{S}\}| = 1$) (2)

Setup

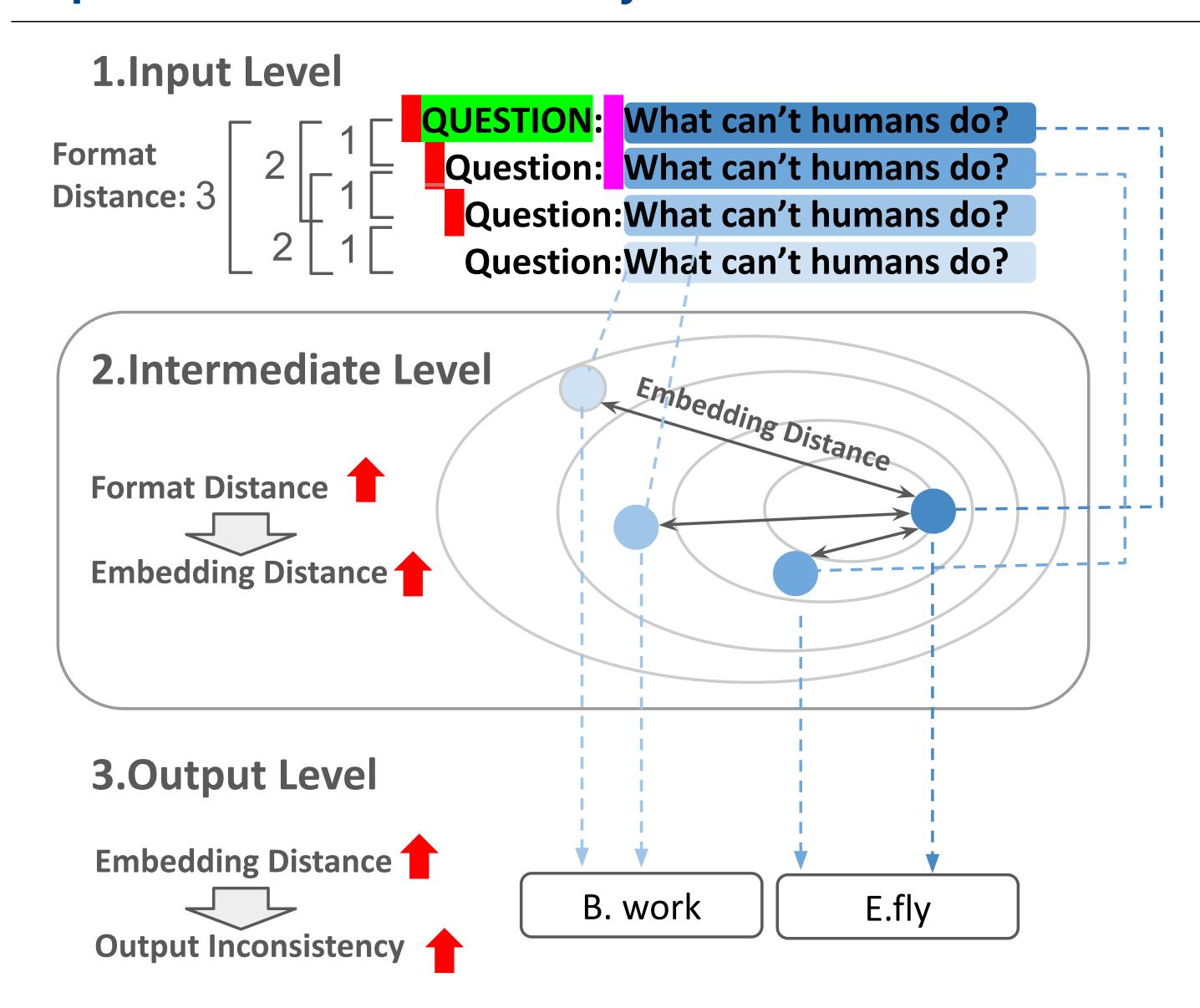
- Tasks: Multiple-choice QA, True/False QA, Math reasoning
- Models: GPT-4o; Llama-3.1 (8B-base, 8B-instruct, 70B-instruct); Phi-3.5-instruct (mini, vision); DeepSeek-R1 (distilled to Llama-3.1-8B-base)
- Prompting: Zero-shot, Few-shot, Zero-shot CoT, Few-shot CoT

Quantitative Results

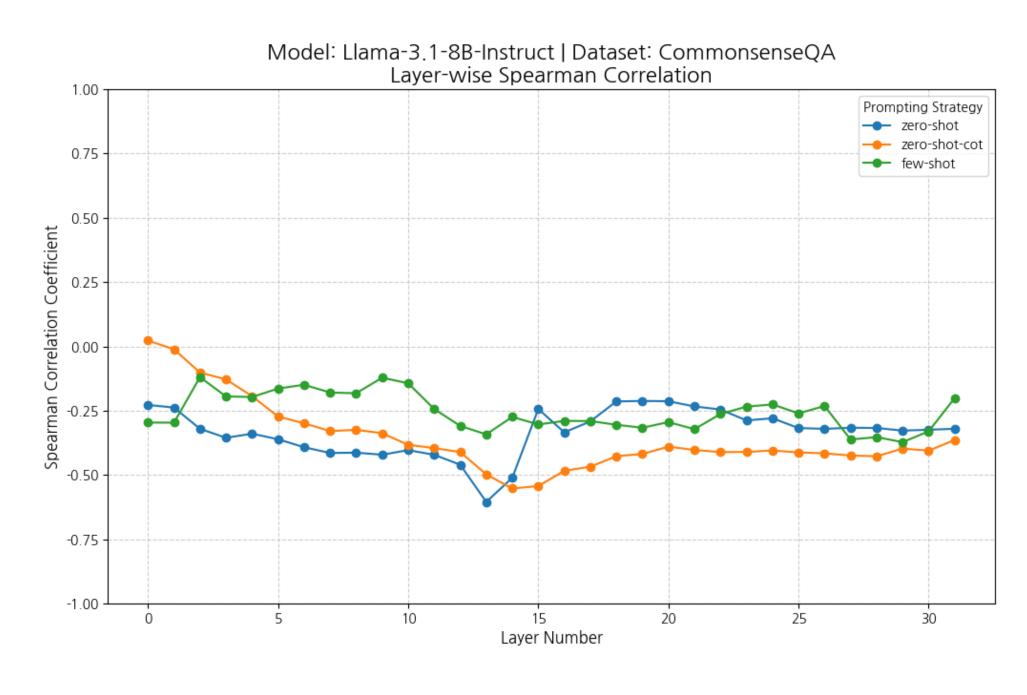


- Greater inconsistency in complex, realistic tasks (e.g., Math, Law)
- Model scaling reduces inconsistency, while multimodal training, instruction tuning, distillation and prompting strategies show little effect.
- Yet, even GPT-40 remains inconsistent under minor format variations.
 => Do LLMs truly separate form from meaning?

Representation-Level Analysis



Embedding instability explains inconsistency: Input-level format changes propagate through embeddings, causing output inconsistency. => Form and meaning are entangled in the embedding space, as format shifts induce semantic drift.



Layer-wise effect: Middle layers show the strongest link between embedding distance and inconsistency, implying that core semantic representation is most vulnerable to format noise.

Context-sensitive impact: Formatting elements (spacing, casing, separator) have similar average effects, but their impact is highly context-dependent, indicating that no single element consistently drives inconsistency.

Uncertainty as a signal: Higher model confidence correlates with higher consistency, suggesting that uncertainty could be leveraged to detect or mitigate inconsistency.

Mitigation Strategies

Prompt-based

- Reference-guided: V improves consistency, X requires external evidence
- Self-consistency: V improves CoT consistency, X computationally expensive

Fine-tuning on diverse formats

- X Poor generalization to unseen formats: no improvement even for memorized samples when prompted in unseen formats (surprising failure)
- △ Limited performance gain: some improvement for unseen samples in seen formats, but inconsistency remains

Summary: Existing methods offer limited improvements. Semantic inconsistency is deeper than input-output mismatch.

Conclusion

Semantic inconsistency is a representational failure.

Form and meaning are entangled in embedding space. Future solutions must target **representation-level alignment**.