When Format Changes Meaning:
Investigating Semantic Inconsistency

of Large Language Models

Cheongwoong Kang?, Jongeun Baek?, Yeonjea Kim*, Jaesik Choi*<
IKAIST INEEJI

Inconsistent

d .
< | %}
nCe
™ | Format Distance t

Same Question, Different Answers? Representation-Level Analysis
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Subtle format changes (e.g., casing, spacing) make GPT-4o give different answers to U [ B. work ] [ E.tly ]

: Output Inconsistenc
the same question. P y t

] Embedding instability explains inconsistency: Input-level format changes propagate
Evaluation Framework through embeddings, causing output inconsistency. => Form and meaning are en-
tangled in the embedding space, as format shifts induce semantic drift.

Format Variation Design

Model: Llama-3.1-8B-Instruct | Dataset: CommonsenseQA

= (1) Space before descriptor: with / without - Layer-wise Spearman Correlation
= (2) Casing of descriptor: Capitalized / ALL CAPS
= (3) Space after separator: with / without
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Metrics
= Semantic consistency: identical predictions across semantically equivalent inputs
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Layer-wise effect: Middle layers show the strongest link between embedding dis-
Setup tance and inconsistency, implying that core semantic representation is most vulnera-
= Tasks: Multiple-choice QA, True/False QA, Math reasoning ble to format noise.
" Mgc!elgz _GPT‘4O? Llama-3.1 (Sijase, 8B-instruct, 70B-instruct); Phi-3.5-instruct Context-sensitive impact: Formatting elements (spacing, casing, separator) have sim-
(mini, vision); DeepSeek-R1 (distilled to Llama-3.1-8B-base) ilar average effects, but their impact is highly context-dependent, indicating that no
* Prompting: Zero-shot, Few-shot, Zero-shot CoTl, Few-shot CoTl single element consistently drives inconsistency.

Uncertainty as a signal: Higher model confidence correlates with higher consistency,
Quantitative Results suggesting that uncertainty could be leveraged to detect or mitigate inconsistency.

Mitigation Strategies
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= Reference-guided: \V improves consistency, X requires external evidence

o

=
©
=

,,,,,,,,,,,,,,,,,

Average Inconsistency
Average Inconsistency

= Self-consistency: V improves Col consistency, X computationally expensive
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Fine-tuning on diverse formats
G 0-41 = X Poor generalization to unseen formats: no improvement even for memorized
_% 03l samples when prompted in unseen formats (surprising failure)
§ = /\ Limited performance gain: some improvement for unseen samples in seen
?C) 0.2 formats, but inconsistency remains
O
® 0.1 Summary: Existing methods offer limited improvements. Semantic inconsistency Is
E deeper than input-output mismatch.
0.0 '
_gB-\nst 70B-\nst GPT-40
pama-3-1 pama-3-4 Conclusion
= Greater inconsistency in complex, realistic tasks (e.g., Math, Law)
* Model scaling reduces inconsistency, while multimodal training, instruction Semantic inconsistency is a representational failure.

tuning, distillation and prompting strategies show little effect. . . .
. PIOMPHNS : Form and meaning are entangled in embedding space.

* Yet, even GPT-40 remains inconsistent under minor format variations. . . .
Future solutions must target representation-level alignment.

=> Do LLMs truly separate form from meaning?

GitHub: https.//github.com/cheongwoong/rolm Emalil: cw.kang@kaist.ac.kr


https://cheongwoong.github.io/
http://sailab.kaist.ac.kr/members/jaesik/
https://github.com/cheongwoong/rolm
mailto:cw.kang@kaist.ac.kr

