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Abstract

Large language models (LLMs) have demon-
strated remarkable capabilities in natural lan-
guage processing tasks. However, they remain
vulnerable to semantic inconsistency, where
minor formatting variations result in divergent
predictions for semantically equivalent inputs.
Our comprehensive evaluation reveals that this
brittleness persists even in state-of-the-art mod-
els such as GPT-4o, posing a serious challenge
to their reliability. Through a mechanistic anal-
ysis, we find that semantic-equivalent input
changes induce instability in internal represen-
tations, ultimately leading to divergent predic-
tions. This reflects a deeper structural issue,
where form and meaning are intertwined in the
embedding space. We further demonstrate that
existing mitigation strategies, including direct
fine-tuning on format variations, do not fully
address semantic inconsistency, underscoring
the difficulty of the problem. Our findings
highlight the need for deeper mechanistic un-
derstanding to develop targeted methods that
improve robustness.

1 Introduction

Large language models (LLMs) have become the
foundation of modern natural language process-
ing, achieving state-of-the-art performance across
a wide range of tasks (Abdin et al., 2024; Dubey
et al., 2024; Achiam et al., 2023). Despite their im-
pressive capabilities, LLMs frequently exhibit se-
mantic inconsistency, where minor variations lead
to inconsistent predictions for semantically equiva-
lent inputs (Sclar et al., 2024; Qi et al., 2023; Jang
et al., 2022; Elazar et al., 2021; Zhao et al., 2021;
Jin et al., 2020; Ravichander et al., 2020). As il-
lustrated in Figure 1, even a frontier model like
GPT-40 may produce different answers to the same
question solely due to formatting changes. Such

*Code and data are available at https://github.com/
CheongWoong/RoLM.
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Figure 1: An example of inconsistent predictions of
GPT-40 for the same question with slight format vari-
ations. The green blocks indicate a change in casing,
while the red/pink vertical lines represent whitespaces.

inconsistencies raise concerns about the trustwor-
thiness and reasoning stability of LLMs, suggesting
that these models may not possess genuine seman-
tic understanding but rather function as stochas-
tic parrots, generating responses based on surface-
level patterns (Kang and Choi, 2023; Joshi et al.,
2022; Bender et al., 2021; Simon, 1954).

In this work, we systematically examine seman-
tic inconsistency of LLMs, investigating whether
they provide consistent predictions across seman-
tically equivalent inputs. Our comprehensive eval-
uation across diverse tasks, model and prompting
strategies quantifies the pervasiveness of issue, re-
vealing that even the state-of-the-art models such
as GPT-4o remain vulnerable. This persistent brit-
tleness presents a serious obstacle for deploying
LLMs in high-stakes domains such as law, finance
and healthcare, where consistency and trust are
essential.

To this end, our work aims to understand when
and why semantic inconsistency emerges and how
it might be controlled. We first provide a mechanis-
tic diagnosis, tracing semantic inconsistency from
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superficial input perturbations to instability in inter-
nal embeddings, revealing a failure to form format-
invariant representations. This analysis suggests
that form and meaning are not clearly separated in
the embedding space. We then show that common
mitigation strategies, such as fine-tuning on diverse
format variations, are insufficient to eliminate in-
consistency, indicating that the problem extends
beyond the input-output level. Finally, by connect-
ing these failures to their internal representational
causes, we motivate the need for representation-
aware solutions that address the root mechanisms
of inconsistency.

2 Related Work

2.1 Prompt Format Variations

Recent studies have shown that large language mod-
els (LLMs) are sensitive to superficial prompt for-
mat variations, changes in input structure that pre-
serve the exact wording but differ in formatting,
often resulting in significant performance variance
(Sclar et al., 2024; Zhao et al., 2021). However,
these works primarily highlight performance fluc-
tuations, without directly assessing whether the
model’s predictions remain semantically consis-
tent across formats. In contrast, our work focuses
explicitly on semantic consistency under prompt
format variations.

2.2 Semantic Consistency

Semantic consistency refers to the ability of a
model to produce invariant predictions across se-
mantically equivalent inputs (Jang et al., 2022).
Prior work have evaluated consistency under vari-
ous input perturbations such as paraphrasing (Jang
et al., 2022; Elazar et al., 2021; Jin et al., 2020),
syntactic rewrites (Ravichander et al., 2020) and
translation (Wang et al., 2025; Qi et al., 2023), typ-
ically using pairwise metrics to assess consistency.
Our work extends this line of research in two im-
portant directions. First, we study a previously
underexplored class of perturbations, prompt for-
mat variations, which are particularly relevant in
real-world deployment. Second, we introduce a
setwise consistency metric that imposes a stricter
criterion: models must remain consistent across all
format variants, not just between pairs. This allows
for a more principled and challenging evaluation
of consistency.

2.3 Mechanistic Interpretability of Semantic
Inconsistency

Beyond behavioral evaluation, recent work has be-
gun exploring the internal mechanisms underlying
semantic inconsistency. For example, Yang et al.
(2025) and Yang et al. (2024) identify model com-
ponents that contribute to inconsistent behavior
and use activation steering techniques to mitigate
it. While these studies focus on intervening to re-
duce inconsistency, our work contributes a novel
diagnostic perspective. To the best of our knowl-
edge, we are the first to validate a mechanistic
chain that links input-level format distance to inter-
mediate representational instability and finally to
output-level inconsistency. This deeper mechanis-
tic understanding goes beyond simple behavioral
observations, identifying not only where inconsis-
tency arises but also how it propagates through the
model’s internal computation. These insights, in
turn, motivate the development of representation-
level solutions that target the root causes of incon-
sistency.

3 Measuring Semantic Consistency under
Prompt Format Variations

Understanding how language models respond to
semantically equivalent inputs with different sur-
face forms is crucial for diagnosing their general-
ization and abstraction capabilities. In this work,
we focus on semantic consistency, which captures
whether a model produces stable predictions across
semantic-preserving input variations (Jang et al.,
2022; Elazar et al., 2021). We specifically analyze
prompt format variations (Sclar et al., 2024; Zhao
et al., 2021), perturbations that alter input format-
ting (e.g., spacing, capitalization) while preserving
the exact wording of the main content verbatim.
This choice is motivated by the prevalence of such
variations in real-world use, where users may unin-
tentionally modify prompt formats without altering
the semantic content.

We propose a novel evaluation framework that
combines: (1) setwise consistency, a stricter metric
that requires identical outputs across all semantic-
preserving variants of an input, and (2) prompt for-
mat variations, a class of overlooked yet practically
important perturbations.

3.1 Semantic Consistency Metrics

To assess semantic consistency, we use both pair-
wise and setwise metrics. Pairwise consistency
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Figure 2: An example of prompt format variations.

measures whether a model returns the same predic-
tion for two semantically equivalent inputs X; and
X, (Elazar et al., 2021):

Consistencypairwise (7: k) = 1(95 = ) ey

where 1 is the indicator function.

While pairwise consistency offers a localized
view, it cannot detect fragmented inconsistencies
across a set of inputs. To address this, we intro-
duce setwise consistency, which evaluates whether
a model produces the same output across an entire
set S of semantically equivalent variations:

Consistencygerwise(S) =1 ({gx | k€ S} =1) (2)

This returns 1 if and only if all predictions in the
set are identical. Notably, pairwise consistency is a
special case of setwise consistency when |S| = 2.

We define semantic inconsistency as 1 —
consistency. Higher inconsistency indicates greater
model sensitivity to semantically equivalent pertur-
bations, suggesting instability in the model behav-
ior. Throughout the paper (Sections 4.2, 5.3 and 6),
we use setwise consistency as our primary evalua-
tion criterion, while pairwise consistency supports
for more fine-grained analyses.

3.2 Format Variation Design

Inspired by Sclar et al. (2024), we examine three
common and impactful prompt format dimensions:
(1) spacing before descriptors (present vs. absent),
(2) casing of descriptors (capitalized vs. all caps)
and (3) separator spacing (present vs. absent). Each
binary option yields 2% = 8 total format variants
per input. While our experiments focus on this
curated set, our framework is broadly applicable to
other types of interventions.

4 Experiments

4.1 Setup
4.1.1 Datasets

We evaluate semantic consistency using five diverse
datasets spanning commonsense, multi-hop reason-

ing, fact verification, mathematical problem solv-
ing and legal reasoning. CommonsenseQA (Talmor
et al., 2019) is a multiple-choice question answer-
ing (MCQA) dataset that requires commonsense
knowledge, where each question has five answer
options. QASC (Khot et al., 2020) is an MCQA
dataset focused on multi-hop reasoning over scien-
tific facts. 100TFQA ! is a collection of true/false
factual questions curated from a public domain
website. GSM8K (Cobbe et al., 2021) contains var-
ious grade-school math word problems that require
step-by-step numerical reasoning. MMLU-Pro-
Law-100Q includes 100 multiple-choice questions
from the Law domain of the MMLU-Pro (Wang
et al., 2024).

To ensure robust evaluation, we split each dataset
into validation and test sets with a 20:80 ratio, using
the validation set to sample few-shot demonstra-
tions. Detailed dataset statistics and input examples
are provided in Appendix A.

4.1.2 Input Construction

For each input sample, we construct eight format-
ting variants using all binary combinations of three
formatting dimensions. We then compute pair-
wise and setwise consistency scores by comparing
model outputs across these variants.

4.1.3 Models

We evaluate a range of language models, includ-
ing Phi-3.5-mini-instruct, Phi-3.5-vision-instruct
(Abdin et al., 2024), Llama-3.1-8B, Llama-3.1-
8B-Instruct, Llama-3.1-70B-Instruct (Dubey et al.,
2024), DeepSeek-R1-Distill-Llama-8B (Guo et al.,
2025) and GPT-40 (Achiam et al., 2023). These
selections allow for targeted comparisons across
architecture, instruction tuning, distillation and
model scale. To ensure reproducibility, we use
greedy decoding across all models.

4.1.4 Prompting Strategies

We access four prompting strategies: (1) zero-shot,
(2) zero-shot chain-of-thought (CoT) (Kojima et al.,
2022), (3) few-shot (Brown et al., 2020) and (4)
few-shot CoT (Wei et al., 2022). Each method
probes a different axis of model behavior. Zero-
shot prompts test foundational capabilities, while
CoT encourages intermediate reasoning. Few-shot
variants provide in-context demonstrations to guide
behavior. In the few-shot settings, we provide four
demonstrations per input.
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Figure 3: Impact of various modeling, prompting and task-related factors on semantic inconsistency.

4.2 Results

Figure 3 summarizes average inconsistency across
different settings. A complete breakdown of results
by task and model is provided in Appendix C. Fig-
ure 3 illustrates the impact of various model design
choices on semantic inconsistency. We find that
multimodal training, instruction tuning and distilla-
tion (Figures 3a—3c) do not reduce inconsistency.
Across tasks (Figure 3d), inconsistency is most se-
vere in domains requiring complex reasoning, such
as professional legal questions (MMLU-Pro-Law-
100Q) and mathematical word problems (GSMS8K).
This suggests that complex or domain-specific rea-
soning amplifies the model’s sensitivity to surface-
level variations. The highest inconsistency rate
was observed in MMLU-Pro-Law-100Q, confirm-
ing that this issue becomes more pronounced in
more complex and realistic settings.

Prompting strategies (Figure 3e), including few-
shot and CoT methods, do not improve consis-
tency. In contrast, model scale emerges as a major
factor (Figure 3f). For instance, Llama-3.1-70B-
Instruct consistently outperforms its 8B counter-
part. While GPT-40 achieves the highest overall
consistency, Llama-3.1-70B-Instruct surpasses it
on certain datasets (Table 9), indicating that fac-
tors beyond size, such as architecture and training
regimen, also play an important role.

In summary, model scale correlates with im-
proved consistency, but even frontier models like
GPT-40 exhibit persistent inconsistency under mi-

nor prompt changes. This persistent failure raises
open questions about the current limits of large lan-
guage model (LLM) architectures and their ability
to generalize meaning beyond surface-level cues
(Bender and Koller, 2020).

4.3 Human Evaluation

To establish a reference point for model behavior,
we conducted a consistency experiment using the
100TFQA dataset with three graduate-level partici-
pants. The evaluation included two conditions: (1)
Format Variation, where each question was shown
in all eight prompt formats used in our main study,
and (2) Repeat Prompts, a control condition where
the same format was repeated eight times to isolate
baseline inconsistency due to human factors such
as fatigue or distraction.

The results show that humans are highly robust
to superficial formatting changes. Two participants
(P1 and P2) demonstrated near-perfect consistency,
with inconsistency rates of 0.000 and 0.013 under
the Format Variation setting. The third participant
(P3) exhibited higher inconsistency (0.163), but
also showed a high inconsistency rate (0.238) in
the control condition, suggesting that their incon-
sistency stemmed from transient attention lapses
rather than format sensitivity.

These results highlight a key distinction: while
human inconsistency may arise from cognitive fac-
tors, LLM inconsistency appears to be a systemic
vulnerability in the model’s internal representa-
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tions. In this light, understanding the underlying
mechanisms of semantic consistency is essential
for building stable and trustworthy LLMs, espe-
cially in high-stakes applications.

5 Tracing the Propagation of Semantic
Inconsistency

We present a mechanistic analysis tracing how
superficial format variations propagate through a
model’s internal representations, ultimately lead-
ing to output inconsistencies. First, we establish
the primary propagation chain: from input-level
format differences to instabilities in intermediate
representations and finally to output-level incon-
sistency, as summarized in Figure 4 (Section 5.1).
We then examine the context-dependent impact of
specific format elements (Section 5.2) and analyze
how model confidence correlates with consistency
(Section 5.3).

5.1 Format Variations Propagate Through
Embedding to Output

To understand how prompt formats are encoded by
the model, we begin by visualizing output embed-
dings from the final layer at the last token position
of the input prompt. Figure 5 shows a 2D projec-
tion via PCA (Pearson, 1901) of these embeddings
for Llama-3.1-8B-Instruct on CommonsenseQA
under the zero-shot setting. Distinct formatting
variants form separable clusters in the embedding
space, suggesting that format differences are en-
coded in the model’s internal representations. This
observation is quantitatively supported by a linear
probe trained on the top four principal components,
which achieves over 99% accuracy in classifying
the format variants.

To assess whether these embedding differences
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Figure 5: Distribution of last-layer embeddings for

Llama-3.1-8B-Instruct on CommonsenseQA (zero-shot
setting). Inputs are clustered according to their for-
matting, indicating that surface-level differences are
encoded in the embedding space.

contribute to semantic inconsistency, we compute
the Spearman’s rank correlation (Spearman, 1904)
between embedding distance (Euclidean) and pair-
wise consistency. For Llama-3.1-8B-Instruct, cor-
relation coefficients in the most predictive layer
range from -0.31 to -0.64 across tasks, indicating
that larger embedding differences between format
variants are associated with higher inconsistency
in predictions. To further localize where this diver-
gence occurs, we compute layer-wise correlations
between embedding distance and pairwise consis-
tency. As shown in Figure 6, the strongest correla-
tions are observed in the middle layers (typically
between layers 10 and 18), highlighting them as the
primary locus of representational instability. Full
results are provided in Appendix D.

Next, we examine how input-level format differ-
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Figure 6: Layer-wise Spearman correlation between
embedding distance and pairwise consistency of Llama-
3.1-8B-Instruct on CommonsenseQA. The correlation
peaks in the middle layers (around layer 13), suggesting
that these layers are most sensitive to format-induced
representational divergence.

ences propagate to embedding space. We introduce
format edit distance, which measures the differ-
ence between two format variants using Hamming
distance over formatting elements:

N
d(f1, f2) = Y W(fris f24) 3)

i=1
where N is the number of formatting dimensions.
For Llama-3.1-8B-Instruct, the correlation between
format edit distance and embedding distance ranges
from 0.64 to 0.92 in the most predictive layer, again

peaking in the middle layers (Appendix E).

Finally, to determine whether format edit dis-
tance directly impacts semantic inconsistency, we
compute its correlation with pairwise consistency.
Table 12 reports values between -0.40 and -0.60 for
12 out of 17 cases, showing a moderate negative
correlation. These values closely mirror the corre-
lations between embedding distance and pairwise
consistency (—0.31 to —0.64), suggesting a coherent
propagation chain. This propagation is summarized
in Figure 4.

Our analysis provides a key diagnostic insight:
semantic inconsistency is not merely a surface-
level phenomenon, but reflects a deep represen-
tational failure within the model, where form and
meaning are not properly disentangled. Our find-
ings not only pinpoint where the problem arises,
but also inform how future interpretability and ro-
bustness efforts should be targeted.

5.2 Context-Dependent Impact of Formatting
Elements

To better understand the input-level drivers of se-
mantic inconsistency, we isolate the effect of each

formatting element and assess whether certain el-
ements are inherently more disruptive than others.
We begin by toggling each formatting element inde-
pendently and measuring the average inconsistency
it induces. Across tasks, models and prompting
strategies, the three elements produce similar aver-
age inconsistency scores: 0.11, 0.11 and 0.10, re-
spectively. This suggests that no single formatting
element dominates in its effect on inconsistency. At
a global level, the model appears similarly sensitive
to all types of superficial changes.

Despite their similar overall impact, we observe
that the relative effect of each element is not con-
sistent across different settings. In some settings,
a particular element induces the highest inconsis-
tency, while in others it induces the least. To quan-
tify this variability, we compute rank correlations
between the inconsistency rankings of the three el-
ements across controlled conditions: (A) varying
tasks while fixing model and prompting strategy,
(B) varying models while fixing task and prompt-
ing strategy and (C) varying prompting strategies
while fixing model and task. The resulting average
pairwise correlations are low: 0.18 (A), 0.17 (B)
and 0.14 (C). These results indicate that the rela-
tive importance of formatting elements is highly
context-sensitive. In other words, the same format-
ting change can have very different impacts depend-
ing on the task, model or prompting method in use.
This context-dependence poses a major challenge
for robustness. While one might hope to mitigate
inconsistency by avoiding a particular problematic
formatting element, our findings show that no such
universal culprit exists. Instead, robust mitigation
methods must account for the broader interaction
between input features and model context, rather
than relying on global heuristics.

5.3 Model Uncertainty as a Correlate of
Inconsistency

Beyond input-level and representation-level factors,
another potential factor explaining inconsistency
lies at the output level: the model’s uncertainty. To
quantify this, we use the maximum softmax prob-
ability of the predicted answer as a proxy for con-
fidence (Hendrycks and Gimpel, 2017). To exam-
ine its relationship with consistency, we compute
Spearman correlation coefficients between confi-
dence scores and setwise consistency. As shown
in Table 13, Llama-3.1-8B-Instruct exhibits mod-
erate positive correlations between 0.30 and 0.67
in 13 out of 17 settings. This finding is practically



Task \ Model Zero-shot Zero-shot CoT Few-shot Few-shot CoT
Llama-3.1-8B-Instruct | 0.7510.10 0.7610.25 0.6810.51 -
+ Self-consistency 0.7510.14 0.7710.20 0.6910.53 -
CommonsenseQA + Fine-tuning 0.7910.09 0.7710.25 0.7710.13 -
gpt-40-2024-11-20 0.8510.07 0.8410.08 0.8710.04 -
+ Self-consistency 0.8510.08 0.8410.08 0.8710.06 -
Llama-3.1-8B-Instruct | 0.8210.09 0.8210.19 0.6110.84 0.6810.74
+ Reference-guided | 0.9110.07 - - -
+ Self-consistency 0.8210.13 0.8410.16 0.6110.85 0.7310.59
QASC + Fine-tuning 0.8410.10 0.8410.19 0.7610.33 0.7310.59
gpt-40-2024-11-20 0.9210.05 0.9110.06 0.9410.04 0.9310.04
+ Reference-guided | 0.9610.03 - - -
+ Self-consistency 0.9110.06 0.9010.06 0.9410.05 0.9310.03
Llama-3.1-8B-Instruct | 0.7010.10 0.7210.26 0.7010.24 0.6810.48
+ Self-consistency 0.6910.10 0.7410.20 0.7010.35 0.6710.32
100TFQA + Fine-tuning 0.6910.10 0.7110.28 0.6710.34 0.6510.42
gpt-40-2024-11-20 0.9310.06 0.9710.05 0.9410.00 0.9810.05
+ Self-consistency 0.9410.08 0.9710.02 0.9410.00 0.9810.01
Llama-3.1-8B-Instruct - 0.5410.75 - 0.7910.37
+ Self-consistency - 0.7410.52 - 0.8710.23
GSMS8K + Fine-tuning - 0.6610.52 - 0.6510.48
gpt-40-2024-11-20 - 0.9110.13 - 0.9510.05
+ Self-consistency - 0.9410.08 - 0.9610.03

Table 1: Mean accuracy (left) and setwise inconsistency (right) are presented. Blue values indicate performance
improvement over baseline (no mitigation), while red values denote performance drop.

significant, as it suggests that model confidence
may serve as a lightweight, real-time indicator of
potential inconsistency.

6 The Limits of Existing Mitigation
Strategies

Our earlier analysis (Section 5) diagnosed seman-
tic inconsistency as a deep representational failure.
This motivates an evaluation of existing mitigation
strategies to assess their effectiveness and limita-
tions. We examine (1) prompt-based techniques
that do not modify model parameters and (2) a more
direct approach using fine-tuning with diverse for-
mat variations.

6.1 Prompt-Based Approaches

We first evaluate two prompt-based methods that
operate without altering the model’s internal
weights. Reference-guided prompting incorporates
key supporting information directly into the input
to better anchor model reasoning. Unlike retrieval-
augmented generation (Shi et al., 2024; Lewis et al.,

2020), which retrieves external evidence, our setup
uses ground-truth evidence to guide responses. We
provide partial evidence (as shown in Table 5) from
the ground-truth context to avoid reducing the task
to simple answer extraction. Applied to QASC,
where each question is supported by two facts, we
concatenate a single supporting fact to the input.
As shown in Table 1, reference-guided prompting
improves both accuracy and consistency, but its
practical utility is constrained by the availability of
such evidence in real-world settings.
Self-consistency is an output-based ensemble
technique that generates multiple responses for the
same input and selects the most frequent answer
via majority voting (Wang et al., 2023). This ap-
proach assumes that the most consistent response
across multiple trials represents the most reliable
answer. We produce 10 responses per input using
nucleus sampling (Holtzman et al., 2020) with a
top_p value of 0.9. While Table 1 shows mean-
ingful gains, especially in chain-of-thought (CoT)
settings, its effectiveness diminishes in non-CoT



settings, where inconsistency can even increase in
some cases. Additionally, self-consistency is com-
putationally expensive due to repeated sampling,
which limits its scalability in real-world deploy-
ments.

6.2 Fine-Tuning with Diverse Formats

We next consider a more direct approach: fine-
tuning the model with diverse formats. Specifically,
we fine-tune Llama-3.1-8B-Instruct on validation
sets from four tasks, expanded to include all eight
formatting variations per sample. Note that the
model is trained for each task, separately.

We evaluate the fine-tuned model under two test
conditions: (1) on unseen inputs with seen format
types and (2) on seen inputs with unseen format
types. In the first setting, fine-tuning reduces in-
consistency, as shown in Table 1. However, in
the second setting, results from CommonsenseQA
(zero-shot) with 32 unseen format types (used in
Appendix H) show that inconsistency actually in-
creases (from 0.18 to 0.21), despite a substantial
boost in task accuracy (from 0.76 to 0.92). These
results suggest that fine-tuning struggles to gener-
alize to new formatting combinations.

6.3 Diagnosis and The Path Forward

These findings demonstrate that the existing meth-
ods fall short of fully addressing semantic incon-
sistency. Prompt-based techniques show limited
gains and rely on conditions (e.g., evidence access,
sampling overhead) that constrain practical use.
Fine-tuning on diverse formats, meanwhile, fails to
generalize to unseen combinations, supporting our
earlier diagnosis that inconsistency is not merely a
surface-level problem but a deeper representational
issue. This reinforces the need for principled ap-
proaches that target internal representations. Future
work should focus on objectives that align interme-
diate representations across semantic-preserving
variations, paving the way for more robust and
trustworthy systems.

7 Conclusion

This study systematically investigates semantic
consistency of large language models (LLMs),
showing that even state-of-the-art models like GPT-
40 remain vulnerable to minor prompt format vari-
ations. Our mechanistic analysis moves beyond
behavioral observation to diagnose the root cause,
tracing the problem to a deep representational

failure, where form and meaning are intertwined.
We further demonstrate that widely used mitiga-
tion strategies, including prompt-based methods
and fine-tuning, do not fully address the problem.
Taken together, our results motivate deeper mecha-
nistic understanding to address the root causes of
semantic inconsistency.

Limitations

Our analysis is limited in scope due to the high com-
putational demands of probing large-scale models
across multiple configurations. Specifically, we
restrict our evaluation to a curated set of prompt
format variations, models and tasks. Expanding
this framework to a broader set of perturbations
and domains would help assess the generality of
our findings. Additionally, our embedding-level
analysis provides only a coarse-grained view of in-
ternal dynamics. Factors such as superposition and
polysemanticity limit the interpretability of aggre-
gated representation distances. While our results
offer a high-level diagnostic of representational fail-
ure, a deeper mechanistic understanding remains
an open and promising direction for future work.
By acknowledging these limitations, we hope to
set a foundation for more precise diagnostic tools
and more effective mitigation strategies that can
improve the semantic robustness of LLMs in real-
world deployments.
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A Dataset Descriptions

A.1 Dataset Statistics

MMLU-Pro-Law-100Q Law Multiple Choice (10) 5 100

Dataset \ Domain Answer Format Validation Samples Test Samples
CommonsenseQA ‘ Commonsense  Multiple Choice (5) 244 977
QASC | Science Multiple Choice (8) 185 741
100TFQA | Factual True/False 20 80
GSMSK | Math Number 263 1056
|

Table 2: Dataset statistics.

A.2 Input Examples

This section shows input examples used in the experiments. Task instructions are shown in Table 3 and
input examples are shown in Table 4. The final input is formatted as “{task_instruction }\n\n{task_input}.”

Task | Setting | Example

Answer the following multiple-choice questions. Select the best answer from the

w/o CoT given options and provide your output in the following valid JSON format: “‘json
{"Answer":"{letter}"}** Do not include any additional text.

Answer the following multiple-choice questions. Think step-by-step and provide a
concise reasoning process that justifies your answer. Based on the reasoning, select
Multiple-choice QA CoT the best answer from the given options and provide your output in the following valid

JSON format: “‘json {"Explanation":"{concise reasoning}", "Answer":"{letter}"}**
Ensure the explanation is minimal sufficient. Do not include any additional text.

Answer the following multiple-choice questions. Based on the provided reference,
select the best answer from the given options and provide your output in the fol-

lowing valid JSON format: “‘json {"Answer": "{letter}"}*‘ Do not include any
additional text.

Reference-guided

Answer the following true or false questions. Determine whether the statement is

w/o CoT True or False and provide your output in the following valid JSON format: “‘json
{"Answer":"{True/False}"}** Do not include any additional text.

Answer the following true or false questions. Think step-by-step and provide
True/False QA . . A .

a concise reasoning process that justifies your answer. Based on the reasoning,
determine whether the statement is True or False and provide your output in the
following valid JSON format: “‘json {"Explanation":"{concise reasoning}", "An-
swer":"{True/False}"}*“‘ Ensure the explanation is minimal sufficient. Do not

include any additional text.

CoT

Answer the following math questions. Think step-by-step and provide a concise
reasoning process that justifies your answer. Based on the reasoning, compute the
correct numerical answer and provide your output in the following valid JSON
Mathmatics CoT format: “‘json {"Explanation":"{concise reasoning}", "Answer":"{numeric an-
swer}"}“* Ensure the explanation is minimal sufficient. Ensure that the answer is
a pure number without any symbols, units, or explanations. Do not include any
additional text.

Table 3: Examples of task instructions.



Task

Example

Multiple-choice QA

Question:From where does a snowflake form?
Options:

A. cloud

B. snow storm

C. billow

D. air

E. snowstorm

True/False QA

Statement:Alaska has the most active volcanoes of any state in the United States.

Mathematics

Question:Finley went to the grocery store and bought rice, beans, and pork for use in their home. It
took her 20 more minutes to cook pork than rice, while beans took half the combined cooking time of
pork and rice. If it took her 30 minutes to cook rice, how long in minutes did it take to cook all the
food?

Table 4: Zero-shot task input examples.

Example

Question:what is saturated fat at room temperature?
Options:

B. cats

C. cows

D. steak

E. gas

F. liquid

G. Protein

H. unsaturated

Reference:Butter is a fat that is a solid at room temperature.

Table 5: Reference-guided input examples from QASC.

A.3 Input Examples with Prompt Format Variations

Format index ‘ Space after separator Descriptor casing Space before descriptor

0

NN Nk W -

No Capitalized No
No Capitalized Yes
No All caps No
No All caps Yes
Yes Capitalized No
Yes Capitalized Yes
Yes All caps No
Yes All caps Yes

Table 6: Prompt format variations.



Format index |

Example

Answer the following true or false questions. Determine whether the statement is True or False and

ey

provide your output in the following valid JSON format: “‘json {"Answer":"{True/False}"}“* Do not

0 include any additional text.

Statement:Alaska has the most active volcanoes of any state in the United States.

Answer the following true or false questions. Determine whether the statement is True or False and

provide your output in the following valid JSON format: “‘json {"jAnswer":"{True/False}"}*** Do not
1 include any additional text.

[lStatement:Alaska has the most active volcanoes of any state in the United States.

Answer the following true or false questions. Determine whether the statement is True or False and

provide your output in the following valid JSON format: “‘json { "_":”{ True/False}"}“* Do
2 not include any additional text.

_:Alaska has the most active volcanoes of any state in the United States.

Answer the following true or false questions. Determine whether the statement is True or False and

provide your output in the following valid JSON format: “‘json {"-":"{ True/False}"}“
3 Do not include any additional text.

_:Alaska has the most active volcanoes of any state in the United States.

Answer the following true or false questions. Determine whether the statement is True or False and

provide your output in the following valid JSON format: “‘json {"Answer":Jj"{ True/False}"}*** Do not
4 include any additional text.

Statement:JAlaska has the most active volcanoes of any state in the United States.

Answer the following true or false questions. Determine whether the statement is True or False and

provide your output in the following valid JSON format: *“‘json {"JAnswer":Jj"{ True/False}"}“‘ Do
5 not include any additional text.

[lStatement:JAlaska has the most active volcanoes of any state in the United States.

Answer the following true or false questions. Determine whether the statement is True or False and

provide your output in the following valid JSON format: “‘json {"_":."{True/False} "
6 Do not include any additional text.

_:.Alaska has the most active volcanoes of any state in the United States.

Answer the following true or false questions. Determine whether the statement is True or False and

provide your output in the following valid JSON format: “‘json {”-":.”{True/False}"}“‘
7

Do not include any additional text.

_:.Alaska has the most active volcanoes of any state in the United States.

Table 7: Format variation examples from 100TFQA (zero-shot).



B Model Specifications

Model Parameters Instruction tuning Multimodal training
Phi-3.5-mini-instruct 3.8B Yes No
Phi-3.5-vision-instruct 4.2B Yes Yes

Llama-3.1-8B 8B No No
Llama-3.1-8B-Instruct 8B Yes No
Llama-3.1-70B-Instruct 70B Yes No

DeepSeek-R1-Distill-Llama-8B 8B Yes No
GPT-40" - Yes Yes

" gpt-40-2024-11-20

Table 8: Model details.



C Detailed Results

It is important to note certain data availability limitations: Few-shot CoT results for CommonsenseQA
are not presented due to the unavailability of labeled explanations. For GSM8K, non-CoT prompting
results were excluded as models demonstrated poor performance without CoT prompting. Additionally,
Llama-3.1-8B’s zero-shot results are unavailable due to its inability to consistently follow task instructions
in a purely zero-shot setting. Similarly, DeepSeek-R1-Distill-Llama-8B inherently generates step-by-step
CoT reasoning even when not explicitly prompted for it, leading to the omission of its non-CoT results.

Task ‘ Model | Zero-shot Zero-shot CoT ~ Few-shot Few-shot CoT
Phi-3.5-mini-instruct 0.7510.10 0.76 10.21 0.7310.10 -
Phi-3.5-vision-instruct 0.76 10.09 0.7310.30 0.7410.10 -
Llama-3.1-8B - - 0.7210.11 -
CommonsenseQA Llama-3.1-8B-Instruct 0.7510.10 0.76 10.25 0.6810.51 -
Llama-3.1-70B-Instruct 0.8210.04 0.8410.12 0.8010.26 -
DeepSeek-R1-Distill-Llama-8B - 0.6810.51 - -
gpt-40-2024-11-20 0.8510.07 0.8410.08 0.8710.04 -
Phi-3.5-mini-instruct 0.76 10.09 0.7910.16 0.7710.10 0.8210.17
Phi-3.5-vision-instruct 0.7510.11 0.7710.29 0.7610.10 0.7710.20
Llama-3.1-8B - - 0.7810.10 0.6910.32
QASC Llama-3.1-8B-Instruct 0.8210.09 0.8210.19 0.6110.84 0.6810.74
Llama-3.1-70B-Instruct 0.9110.04 0.9210.05 0.9010.21 0.9210.05
DeepSeek-R1-Distill-Llama-8B - 0.6910.52 - 0.7110.52
gpt-40-2024-11-20 0.9210.05 0.9110.06 0.9410.04 0.9310.04
Phi-3.5-mini-instruct 0.6610.11 0.6810.14 0.6910.05 0.6510.14
Phi-3.5-vision-instruct 0.6110.12 0.6710.34 0.6310.20 0.6610.18
Llama-3.1-8B - - 0.7310.10 0.6710.32
100TFQA Llama-3.1-8B-Instruct 0.7010.10 0.7210.26 0.7010.24 0.6810.48
Llama-3.1-70B-Instruct 0.8810.02 0.8210.14 0.8710.14 0.8210.09
DeepSeek-R1-Distill-Llama-8B - 0.6610.48 - 0.6810.55
gpt-40-2024-11-20 0.9310.06 0.97 10.05 0.9410.00 0.98 10.05
Phi-3.5-mini-instruct - 0.5210.68 - 0.8410.19
Phi-3.5-vision-instruct - 0.5410.71 - 0.7310.32
Llama-3.1-8B - - - 0.5010.48
GSMSK Llama-3.1-8B-Instruct - 0.5410.75 - 0.7910.37
Llama-3.1-70B-Instruct - 0.8810.21 - 0.9410.06
DeepSeek-R1-Distill-Llama-8B - 0.7810.33 - 0.8610.28
gpt-40-2024-11-20 - 0.9110.13 - 0.9510.05
Phi-3.5-mini-instruct 0.2710.25 0.3210.49 0.2410.23 0.3110.52
Phi-3.5-vision-instruct 0.2310.30 0.2410.58 0.2510.19 0.2410.71
Llama-3.1-8B - - 0.2410.24 0.2610.39
MMLU-Pro-Law-100Q Llama-3.1-8B-Instruct 0.2910.29 0.3010.65 0.1710.64 0.2010.53
Llama-3.1-70B-Instruct 0.4110.05 0.4510.36 0.4010.06 0.4010.43
DeepSeek-R1-Distill-Llama-8B - 0.1810.87 - 0.2110.90
gpt-40-2024-11-20 0.5810.18 0.5710.26 0.5810.17 0.5610.28

Table 9: A comprehensive overview of average accuracy (left) and setwise inconsistency (right).



D Correlation between Embedding Distance and Output Consistency

Model Dataset | Strategy | Mean Std Min (Best) Max (Worst) Best Layer

Zero-shot -0.53 0.14 -0.72 -0.15 19
CommonsenseQA Zero-shot CoT | -0.71 0.11 -0.88 -0.41 10
Few-shot -0.32  0.18 -0.57 -0.06 1
Zero-shot -0.36  0.13 -0.52 0.03 19

QASC Zero-shot CoT | -0.58 0.11 -0.69 -0.28 21
Few-shot -0.59 0.09 -0.74 -0.44 17

Few-shot CoT | -0.24 0.04 -0.31 -0.16 31

Phi-3.5-mini-instruct Zero-shot -0.41  0.16 -0.87 -0.17 1
Zero-shot CoT | -0.37 0.15 -0.57 -0.08 26

100TFQA Few-shot -0.20  0.09 -0.39 -0.01 9
Few-shot CoT | 0.16 0.08 -0.05 0.28 0

Zero-shot CoT | -0.36 0.14 -0.48 0.05 13

GSMB8K Few-shot CoT | -0.50 0.07 -0.61 -0.35 18
Zero-shot -0.10 0.16 -0.29 0.25 20

Zero-shot CoT | -0.41 0.08 -0.54 -0.22 21
MMLU-Pro-Law-100Q | "“p 0 Ghoe | 014 012 -0.30 0.14 30
Few-shot CoT | -0.63 0.18 -0.81 -0.06 16

Zero-shot -0.33  0.09 -0.60 -0.21 13
CommonsenseQA Zero-shot CoT | -0.36 0.14 -0.55 0.02 14
Few-shot -0.26  0.07 -0.37 -0.12 29

Zero-shot -0.25 0.12 -0.56 -0.11 13

QASC Zero-shot CoT | -0.40 0.13 -0.61 -0.18 13
Few-shot -0.33  0.12 -0.52 -0.14 12
Few-shot CoT | -0.20 0.14 -0.34 0.07 22

Llama-3.1-8B-Instruct Zero-shot -0.11 0.12 -0.34 0.05 13
Zero-shot CoT | -0.12  0.08 -0.33 -0.03 0

100TFQA Few-shot -0.36  0.07 -0.49 -0.18 9
Few-shot CoT | -0.31 0.05 -0.42 -0.14 2

Zero-shot CoT | -0.11 0.10 -0.35 0.01 13
GSMBK Few-shot CoT | -0.41 0.10 -0.60 -0.23 29
Zero-shot -0.16 0.14 -0.46 0.03 10

Zero-shot CoT | -0.46 0.11 -0.64 -0.29 11

MMLU-Pro-Law-100Q | gl Gioe | 019 007 -0.31 -0.03 18
Few-shot CoT | -0.26 0.11 -0.38 -0.00 18

Table 10: Aggregation statistics of Spearman correlation coefficients between embedding distance and pairwise
consistency for all layers.
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Figure 7: Layer-wise Spearman correlation coefficients between embedding distance and pairwise consistency
across tasks.



E Correlation between Format Edit Distance and Embedding Distance

Model Dataset | Strategy | Mean Std Min (Worst) Max (Best) Best Layer
Zero-shot 0.72  0.09 0.50 0.86 17
CommonsenseQA Zero-shot CoT | 0.74 0.11 0.48 0.90 18
Few-shot 0.62 0.06 0.37 0.72 19
Zero-shot 0.71 0.10 0.44 0.84 17
QASC Zero-shot CoT | 0.73 0.11 0.51 0.90 16
Few-shot 0.64 0.08 0.40 0.78 17
Few-shot CoT | 0.63 0.07 0.45 0.76 19
Phi-3.5-mini-instruct Zero-shot 0.82 0.11 0.50 0.90 19
Zero-shot CoT | 0.76  0.13 0.30 0.91 18
100TFQA Few-shot 0.73  0.09 0.47 0.87 11
Few-shot CoT | 0.67 0.06 0.51 0.78 13
Zero-shot CoT | 0.77 0.14 0.39 0.91 20
GSMB8K Few-shot CoT | 0.65 0.09 0.36 0.74 19
Zero-shot 0.67 0.12 0.33 0.83 18
Zero-shot CoT | 0.69 0.13 0.40 0.92 17
MMLU-Pro-Law-100Q | g Goe | 064 0.13 0.24 0.79 28
Few-shot CoT | 0.66 0.11 0.30 0.80 31
Zero-shot 0.68 0.11 0.38 0.89 14
CommonsenseQA Zero-shot CoT | 0.63  0.10 0.39 0.83 14
Few-shot 0.67 0.11 0.41 0.82 17
Zero-shot 0.69 0.11 0.38 0.91 14
QASC Zero-shot CoT | 0.60 0.11 0.43 0.78 14
Few-shot 0.61 0.08 0.38 0.72 29
Few-shot CoT | 0.55 0.04 0.42 0.64 11
Llama-3.1-8B-Instruct Zero-shot 0.77 0.11 0.54 0.92 5
Zero-shot CoT | 0.68 0.14 0.52 0.92 3
100TFQA Few-shot 0.68 0.11 0.49 0.90 6
Few-shot CoT | 0.67 0.11 0.46 0.90 4
Zero-shot CoT | 0.57 0.12 0.44 0.88 13
GSMBK Few-shot CoT | 0.58 0.06 0.41 0.71 31
Zero-shot 0.70 0.12 0.41 0.90 14
Zero-shot CoT | 0.67 0.11 0.46 0.86 10
MMLU-Pro-Law-100Q | g (/¢ 0.65  0.08 0.42 0.75 18
Few-shot CoT | 0.60 0.07 0.43 0.77 10

Table 11: Aggregation statistics of Spearman correlation coefficients between format edit distance and embedding

distance for all layers.
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Figure 8: Layer-wise Spearman correlation coefficients between format edit distance and embedding distance across
tasks.



F Correlation between Format Edit Distance and Output Consistency

Task Model Zero-shot Zero-shot CoT Few-shot Few-shot CoT
Phi-3.5-mini-instruct -0.74 (6.276e-06) -0.61 (5.079e-04) -0.61 (5.343e-04) -
Phi-3.5-vision-instruct -0.70 (3.208e-05) -0.72 (1.868e-05) -0.67 (1.047e-04) -
Llama-3.1-8B - - -0.69 (5.278e-05) -
CommonsenseQA Llama-3.1-8B-Instruct -0.50 (0.007) -0.60 (6.742e-04) -0.20 (0.309) -
Llama-3.1-70B-Instruct -0.47 (0.011) -0.62 (3.832e-04) -0.26 (0.187) -
DeepSeek-R1-Distill-Llama-8B - -0.60 (6.771e-04) - -
gpt-40-2024-11-20 -0.46 (0.015) -0.36 (0.062) -0.33 (0.082) -
Phi-3.5-mini-instruct -0.57 (0.001) -0.48 (0.009) -0.68 (6.519¢-05) -0.48 (0.010)
Phi-3.5-vision-instruct -0.71 (1.921e-05) -0.68 (5.944e-05) -0.61 (5.923e-04) -0.72 (1.628e-05)
Llama-3.1-8B - - -0.61 (4.966e-04) -0.53 (0.004)
QASC Llama-3.1-8B-Instruct -0.49 (0.009) -0.69 (4.883e-05) -0.21 (0.283) -0.20 (0.309)
Llama-3.1-70B-Instruct -0.37 (0.053) -0.38 (0.043) -0.19 (0.327) -0.66 (1.463e-04)
DeepSeek-R1-Distill-Llama-8B - -0.59 (9.278e-04) - -0.53 (0.003)
gpt-40-2024-11-20 -0.58 (0.001) -0.22 (0.251) -0.41 (0.031) -0.20 (0.311)
Phi-3.5-mini-instruct -0.54 (0.003) -0.16 (0.404) -0.40 (0.037) -0.23 (0.243)
Phi-3.5-vision-instruct -0.69 (4.913e-05) -0.27 (0.169) -0.48 (0.009) -0.43 (0.021)
Llama-3.1-8B - - -0.51 (0.006) -0.43 (0.022)
100TFQA Llama-3.1-8B-Instruct -0.32 (0.101) -0.16 (0.423) -0.49 (0.008) -0.40 (0.033)
Llama-3.1-70B-Instruct -0.19 (0.342) -0.34 (0.076) -0.37 (0.052) -0.22 (0.253)
DeepSeek-R1-Distill-Llama-8B - -0.15 (0.461) - -0.16 (0.405)
gpt-40-2024-11-20 -0.20 (0.309) -0.12 (0.536) - -0.16 (0.430)
Phi-3.5-mini-instruct - -0.43 (0.021) - -0.80 (3.629¢-07)
Phi-3.5-vision-instruct - -0.39 (0.041) - -0.87 (2.870e-09)
Llama-3.1-8B - - - -0.66 (1.406e-04)
GSM8K Llama-3.1-8B-Instruct - -0.59 (9.793e-04) - -0.40 (0.036)
Llama-3.1-70B-Instruct - -0.49 (0.008) - -0.54 (0.003)
DeepSeek-R1-Distill-Llama-8B - -0.74 (6.255e-06) - -0.59 (8.564¢-04)
gpt-40-2024-11-20 - -0.23 (0.230) - -0.12 (0.527)
Phi-3.5-mini-instruct -0.46 (0.015) -0.40 (0.034) -0.43 (0.023) -0.51 (0.006)
Phi-3.5-vision-instruct -0.46 (0.013) -0.48 (0.009) -0.49 (0.008) -0.56 (0.002)
Llama-3.1-8B - - -0.51 (0.006) -0.42 (0.028)
MMLU-Pro-Law-100Q Llama-3.1-8B-Instruct -0.50 (0.007) -0.45 (0.016) -0.42 (0.025) -0.54 (0.003)
Llama-3.1-70B-Instruct -0.06 (0.780) -0.30 (0.123) -0.29 (0.129) -0.27 (0.159)
DeepSeek-R1-Distill-Llama-8B - -0.41 (0.028) - -0.53 (0.004)
gpt-40-2024-11-20 -0.20 (0.297) -0.11 (0.587) -0.27 (0.170) -0.17 (0.384)

Table 12: Correlation analysis between format edit distance and pairwise consistency.

correlation coefficient and p-value (in parenthesis).

Each cell represents Spearman



G Additional Results of Confidence Analysis

Model ‘ Task

Zero-shot

Zero-shot CoT

Few-shot

Few-shot CoT

CommonsenseQA
QASC
100TFQA
GSMSK
MMLU-Pro-Law-100Q

Llama-3.1-8B-Instruct

0.49 (7.577e-60)
0.46 (8.151e-41)
0.51 (1.065¢-06)

0.59 (1.231e-10)

0.60 (8.244e-96)
0.53 (2.562e-55)
0.54 (1.036e-06)
0.67 (6.372e-90)
0.52 (6.745¢-08)

0.36 (1.804e-30)
0.16 (1.521e-05)
0.66 (2.269-11)

0.30 (0.003)

0.19 (6.279¢-07)

0.69 (1.230e-11)

0.24 (1.339-11)
0.04 (0.673)

CommonsenseQA
QASC
100TFQA
GSMSK
MMLU-Pro-Law-100Q

gpt-40-2024-11-20

0.46 (1.729¢-52)
0.40 (1.084e-29)
0.4 (5.141e-05)

0.65 (3.206e-13)

0.41 (7.530e-41)
0.47 (2.182e-41)
0.36 (8.912e-04)
0.59 (1.315€-88)
0.49 (2.556e-07)

0.36 (1.066e-31)
0.36 (9.932¢-25)

0.63 (2.75%¢-12)

0.43 (1.149¢-34)

0.49 (4.179¢-06)

0.30 (1.718e-21)
0.26 (0.009)

Table 13: Correlation analysis between model confidence and setwise consistency. Each cell represents Spearman
correlation coefficient and p-value (in parenthesis).

H Generalization to Extended Format Variations

We have extended the scope of format variations to include more complex formatting elements, such as
indentation (e.g., nested inputs with tabbed subclauses) and list structures (e.g., bulleted lists). These
extended formats reflect more realistic use cases, where inputs may vary in structural presentation while
maintaining semantic equivalence.

In our case study on CommonsenseQA (zero-shot) with 32 format variants, Llama-3.1-8B-Instruct
and GPT-4o exhibits higher inconsistencies, 0.18 and 0.15, respectively. For Llama-3.1-8B-Instruct, we
confirm strong correlations between semantic consistency and embedding distance (Spearman r =-0.71, p
< 0.05), format distance (Spearman r = -0.63, p < 0.05) and model confidence (Spearman r = 0.62, p <
0.05). For GPT-40, we observe a significant correlation with format distance (Spearman r =-0.42, p <
0.05) and confidence (Spearman r = 0.60, p < 0.05). Overall, this extended analysis demonstrates that
our findings are generalizable across a wide range of format variations, highlighting the need for more
consistent and format-agnostic language models.
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