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Stochastic Parrots 2. or Intelligent Agents 8'? Experimental Setup
Hypothesis: Large language models (LLMs) often rely on simple co-occurrence = We test open-source versions of GPT-3 with four different model sizes: GPT-Neo
statistics without understanding the meaning behind words, causing hallucinations. 125M, GPT-Neo 1.3B, GPT-Neo 2.7B and GPT-J 6B, which are publicly available

on Huggingface's transformers.
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o The correlation between co-occurrence and factual knowledge probing accuracy:
Barack Minji 5 We plot hits@1 against P,etrain(0bj|subj) on the test set.
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In the hypothetical example, the model fails to answer the question about the wife of 0.00 T 12 14 18 116 130 1;/.64\\: 0
Barack Obama by generating the most frequently co-occurring word ‘Hillary’, while
the correct answer is ‘Michelle. . .
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Fact | K led Probi Zero-shot: \We observe a strong correlation between hits@1 and the co-occurrence
actua noweage Frooing count. As a result, LLMs struggle to recall rare facts. \We observe that such correla-

fion remains despite scaling up model sizes.

The LAMA Probe
= We adopt the LAMA-TREX dataset, which consists of 41 relations.

¢ GPT-Neo 125M = GPT-Neo 1.3B GPT-Neo 2.7B @ GPT-J 6B
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'‘Canada’-'capital’-‘Ottawa’ A pre-defined template
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SLLLLLEY SLLLLLEY Finetuned: We observe that the correlation remains despite finetuning.
Language Model Language Model ¢ GPT-3.5 (text-davinci-003) = ChatGPT (GPT-3.5-turbo) + ChatGPT (GPT-4) Fl’equeﬂc hin|Ratio
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= We consider the subject-object co-occurrence of the pre-training dataset. 0
Total 38%
P(obj | subj)
Pre-training documents Inverted index table Co-occurrence matrix Left: We test la rger models (G PT-3175B and ChatG PT) to vel’ify that such correlation
Subject Object Count remams.desgte scaling up model sizes. nght: The correct answer is overridden by a
1 2019 Mercer ranks word with higher co-occurrence counts in a total of 38% of the failure cases of GPT-J
Ottawa with the third Canada | 1,13,17, ... Canada | Toronto | 246 6B. The ratio is much higher when recalling rare facts.
highest quality of living
of any Canadian city, - » Ottawa 1,7,14,... — Canada | Ottawa 19
and 19th highest in the
world. It is also rated Takeaways
th_e second cleanest_ city
 oamest ity i the. Toronto |3, 13,17, ... Canada | London | 8 = Our results reveal that LLMs are vulnerable to the co-occurrence bias, defined as
world. preferring frequently co-occurred words over the correct answer.
= Consequently, LLMs struggle to recall facts whose subject and object rarely
Correlation Analysis co-occur in the pre-training dataset.
* We plot hits@1 of the target LLMs against the conditional probability of the gold = Co-occurrence bias remains despite scaling up model sizes or finetuning.
object given a subject. Here, we divide the samples into multiple frequency = Therefore, we suggest further investigation on mitigating co-occurrence bias to
(conditional probability) bins and report the average hits@1 for each bin. ensure the reliability of language models by preventing potential harms.
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